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1 Question 1

a. The element 2 + v/3 works.
b. Consider the subgroup of Z[\/g] X generated by the element above:
<2+4V3>={2+V3)":neZ}.
Notice that this set is infinite. Then, in particular, Z[v/3]* is inifite.
c. Read the proof of VI.1.5 Theorem in lecture notes.
d. This is an easy calculation.

e. By definition, one inclusion is trivial. For the other, take a + bv/3 € Ker(i).
Then a+5b = 0 mod11 which means that a+5b = 11k for some k € Z. Then
we have

a+bV3 = (11k — 5b) + bV/3 = 11k + b(—5 + V3)

which implies that
Ker(p) C 11-Z+ (=5 +V3) - Z.

Clearly,

1-Z+ (=5+V3)-Z C 11-Z[V3] + (=5 + V3) - Z|V/3]
which gives the result.

f. We are looking for an element a + b3 such that

(a+bV3)-Z[V3] =11-Z[V3] + (=5 + V3) - Z[V3].

If this equality is true, there must be an element ¢ 4+ dv/3 such that
(a+bV3)(c+dV3) =11.

Solving this equation, we get

11a 110

= ———— d:*.
¢ a? — 3b2’ —a? + 3b?

Notice that a? — 3b? is the norm of our potential generator. Since both ¢ and
d are integers, the element a? — 3b must divide 11a and 11b.



Let’s pick @ = 1 and b = 2 in which case a? — 3b> = —11 divides both
11la = 11 and 11b = 22. I claim that this element generates the kernel.

The equality
142V3=1-11+2-(=5+V3),

gives one inclusion. On the other hand we have

11=(1+2V3)(-1+2V3), —5+V3=(1+2V3)(1-3)

which give the other inclusion.

2 Question 2

By Mj(F2) we denote the ring consisting of all 2 x 2 matrices with coefficients in
Fy. Let A = (1 é) L Furthermore, ev4 : Fa[z] — Ma(F2) denotes evaluation
at A.

2.1 Preliminaries

Before we start answering the questions, note first that ev4 is a ring homomor-
phism as in Example II1.2.4. Indeed, consider the ring homomorphism

¢ : ]F2 — MQ(FQ) (1)

0+ (8 8)
1 (é (1)) =1 (3)

Then the matrix A commutes with all elements in the image of ¢ (as in Example
I11.2.4), so we can use Theorem II1.2.1(c) to obtain the desired ring homomor-
phism ev 4 : Fa[z] — Ma(F2).

given by

0, (2)

Secondly, note that A% = ((1) }), so that
A2+ A+I=0. (4)

This implies that 22 + 2 + 1 € F3[x] maps to zero under the evaluation homo-
morphism ev,4. By using long division, we then obtain for every f € Fylz] a
unique remainder r of degree < 2 such that

f=q - @*+x+1)+r

This representation will be used often in the upcoming questions.

1 changed the notation for the matrix because ¢ is usually used in the book for homomor-
phisms. This notation is also in line with the notation used in Example II1.2.4.



2.2 The question

(a) Iseva surjective? Answer: Consider the set S of all polynomials of degree
strictly less than 2 inside Fa[z]. We then have ev4(S) = eva(Fz[z]). In-
deed, by the above considerations every element f € Fs[z] can be uniquely
written as f = q- (22 + o + 1) +r, with r in S. Applying ev 4 to this equa-
tion, we then have

eva(f) =evalgleva(@® +a+1)+eva(r) =0+eva(r) =eva(r). (5)

This shows that eva(f) € eva(S). Since f was arbitrary, we conclude
that ev 4 (Fa[z]) C eva(S). We already have ev4(S) C eva(Fz[z]) because
S C Fax], so we conclude that ev4(S) = ev4(Fa[z]).

Note now that S has 4 elements (namely: 0, 1, z, z + 1), so eva(S) =
ev4(Fa[z]) has at most 4 elements. Since My(F3) has 16 elements, we
conclude that ev s cannot be surjective.

(b) Show that x%2+x+1 is the minimal polynomial of A. Answer: By Example
I11.4.4, the minimal polynomial is the monic polynomial m 4 € Fa[x] such
that Ker(eva) = (ma). We already saw in Equation 4 that #2 +z + 1 €
Ker(eva), so (22 + z + 1) C Ker(evya). Since 2 4+ z + 1 is irreducible (it
has no zeros, so it is irreducible by Theorem V.1.3) in the principal ideal
domain Fy[z], we find that (2% + 2 + 1) is maximal by Theorem V.2.4.
The kernel of ev 4 is not the entire ring (for instance I does not map to
zero), so we conclude that Ker(evs) = (22 + z + 1). We thus find that
22 4+ x + 1 is the minimal polynomial of A.

(¢) IsKer(eva) a prime ideal? Answer: As we saw in (b), it is maximal, so it
is prime by Corollary IV.2.7.

(d) Is eva(F2[z]) a field? Answer: By the first isomorphism theorem (The-
orem 11.3.7), we have that ev4(Fa[x]) ~ Falx]/(z? + 2z + 1). Since (2% +
x + 1) is maximal, we have that Fo[z]/(2? + x + 1) is a field by Theorem
IV.2.3. We conclude that ev 4 (Fz[x]) is a field.

(e) Determine a generator of the ideal Ker(ev4). Answer: The minimal poly-
nomial is the monic generator of the kernel of this homomorphism by def-
inition. By part (b), the minimal polynomial is 2% + z + 1. We conclude
that z2 + = + 1 is a generator of Ker(ev,).

(f) How many elements does (Fo[x]/Ker(eva))* have? Answer: By part (d),
ev A (Fa[z]) is a field. This implies that the unit group (Fo[z]/Ker(ev4))* is
the set of nonzero elements in this ring. By the considerations in part (a),
ev 4 (Fa[z]) has at most 4 elements. In fact, it has exactly four elements:

1
1 0) 11
and 0 is mapped to O. We conclude that there are 3 nonzero elements in
ev4(Fa[z]) and thus (Fao[z]/Ker(eva))* has order 3.

x is mapped to (1 z + 1 is mapped to <O 1>, 1 is mapped to I

3 Question 3

Let f := 23 — 2 € F7[z] be a polynomial.
(a) We want to prove that f € Fr[z] is irreducible. Since it is a cubic polynomial,



by theorem V.1.3, it is enough to prove that f does not have a zero in F7;. We
can do it by hand, by computing all possible values of f(z) and seeing that
there is no value with f(z) = 0, as it is given in the table:

ol x| wl v ~lo|s
el o] s oo o

We could do it in a easier way, as we know that in this field, for all = # 0 holds
2% = 1, implying that 22 = £1, therefore 23 — 2 does not have roots in F; since
x = 0 is not a zero of f.

(b) Let R :=Fr[z]/(f - Fr[z]). By theorem V.2.7 we conclude that R is a field
because f is irreducible (and by theorem V.2.4 we know that the ideal f-F7[x]
is maximal in Fr[z]).

(c) A polynomial g(y) := y> —y + 2 € F7 is also irreducible, because it has no
zeros in F7, as we can check from the table:

—~~
<
~—

O Y = | W N Ol
W OO | N N

Therefore, as in (a), we conclude that R' = Fr[y]/(g-F7[y]) is a field. Denote by
B a zero of g in its splitting field. Then R’ = F7(3), by theorem VII.2.5. Fields
R and R’ are extensions of F; by algebraic numbers a and /3, respectively, whose
minimal polynomials, f and g, are of degree three (we know that polynomials
f and g are irreducible, so minimal for « and ). Then, by theorem VII.3.3,
we conclude that

[R: 7] = deg(f) = 3 = deg(g) = [R' : Fy],

i.e. both of these fields are cubic extensions of F7;. Theorem IX.1.1 states that
a cubic extension of F7 is unique up to isomorphism, giving a desired conclusion
R=R.

(d) We know already one zero of a polynomial f, this is «. We see that the other
roots of a polynomial f differ from « ”by a multiplication of some third root of
unity”. In [F7, there are all three third roots of unity. Namely, in characteristics
7, we have 23 = 1 and 43 = 1 (and of course 12 = 1). So, the roots of f are a,
2« and 4a, all of them are elements in R. So, €2, the splitting field of f, is equal
to R. As this is a cubic extension of Fr, it has 73 = 343 elements.

(e) Let a be a zero of a polynomial f in Q. We want to determine its order in



a multiplicative group Q*. We know that a® = 2. We also know that 2% = 1
in F7, therefore in 2 too. So, a® = 1 and if n is the order of o, then n | 9. As
a # 1 and we know that a® = 2 # 1, the order cannot be smaller than 9. The
order of o in Q* is 9.

(f) The map ¢ : R — R is given by

¢(a+br +cx® (mod f)) = a+ 4bx + 2cx*  (mod f).

Since we know that R = F;(«a), where f(a) = 0, the map ¢ is the same as a
map ¢ : F7(a) — Fr(a) given by

o(a + ba 4 ca®) = a + 4ba + 2ca?.

(Recall that this is true because « is the image of x under the isomorphism

i : R = TFr(a), i(zx (mod f)) = a.) We need to check that ¢ is an automor-

phism. So, we need to check that

(1) ¢(0) = 0, which follows when we put a =b=c = 0;

(2) ¢(1) = 1, which follows for a =1, b=c=0;

(3) ¢ is compatible with +

o((a1+bratcra?))+(ag+bosa+tcaa?)) = p((ay+ag)+ (b1 +by)a+(c1+cz)a?) =

= (a14as)+4(b1+bo)a+2(c1+co)a? = (a1 +4bia+2c10?)+(ag+4bra+2c00?%) =
= p(ay + bia + c10?) + @(ag + bya + c2a?);

(4) ¢ is compatible with -, we compute both expressions

o((ay + bia+ c10?)) - (ag + bra + c20?)) =
= p((a1ag +2b1cy +2¢1ba) + (ar1by +bras +2c1c0)a+ (a1ca +bibs +craz)a?)) =
= (a1az + 2b1ca + 2¢1b2) + 4(a1b2 + bras + 2c1c2)a + 2(arco + bibe + C1@2)O{2,
o(a1+bratcra?)-p(ag+boatcaa?) = (ay+4bya+2c10?))-(ag+4bra+-2cp0%)

= (a1a2 + 2bico + 2Clb2) + 4(a1b2 + bias + 20102)a + 2(&102 + bi1bs + clag)a27

keeping in mind that we compute in characteristics 7, i.e. 7x = 0, for all xz. We
see that we get the same expressions, so ¢ is compatible with -;
(5) ¢ is injective. We already know that as all field homomorphisms are injective,
and from (1)-(4) it follows that ¢ is a field homomorphism. But we can explicitly
check that as

ola+ba + ca®) = a+ 4ba + 2ca® = 0

implies @ = b = ¢ =0, so ker(¢) = 0.
(6) ¢ is surjective. We want to find a preimage for any A + Ba + Ca?. From
the definition of ¢, we see that

0(A+2Ba +4Ca?) = A+ Ba + Co?,

remembering that 7B = 7C = 0. So, ¢ is indeed the automorphism of R.

There is an easier way to prove this fact. We know by theorem VIIIL.1.5(i)
that all F7-automorphisms of F7(a) map « into some other root of a polynomial
f. So, a can be mapped to a, 2« or 4a. We see that ¢(a) = 4a. It is enough to



give the image p(a) to determine a homomorphism since all elements of F7(«)
can be expressed as a combination of o and elements of F;. We want to extend
the map . Then

o(a?) = p(a-a) = p(a) - p(a) = da - 4a = 2a°
and then by additivity
o(a + ba + cozz) = q + 4ba + 2ca’.

By construction of ¢, it is a field homomorphism. To prove that it is an auto-
morphism, it is enough to do the final part and to prove that o o g oy = id
because then follows that ¢ o ¢ is an inverse of ¢. There are (at least) three
ways to do it. The first one is to prove it by direct computation. The other one
is to note that the map ¢ is linear and can be represented in a basis [1, a, o]
as a matrix

1 00
M=10 4 0
0 0 2

and to compute that M3 is the identity matrix. Finally, the third way is deter-
mine the image of a. We compute that p(o(p(a))) = ¢(p(da)) = ¢(2a) = a,
and since it is identity on F7 and on « it is the identity on the whole F7(«). So,
© has the order 3 because ¢ # id.



