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1 Question 1

a. The element 2 +
√

3 works.

b. Consider the subgroup of Z[
√

3]× generated by the element above:

< 2 +
√

3 >= {(2 +
√

3)n : n ∈ Z}.

Notice that this set is infinite. Then, in particular, Z[
√

3]× is inifite.

c. Read the proof of VI.1.5 Theorem in lecture notes.

d. This is an easy calculation.

e. By definition, one inclusion is trivial. For the other, take a+ b
√

3 ∈ Ker(ϕ).
Then a+5b = 0 mod11 which means that a+5b = 11k for some k ∈ Z. Then
we have

a+ b
√

3 = (11k − 5b) + b
√

3 = 11k + b(−5 +
√

3)

which implies that

Ker(ϕ) ⊂ 11 · Z + (−5 +
√

3) · Z.

Clearly,

11 · Z + (−5 +
√

3) · Z ⊂ 11 · Z[
√

3] + (−5 +
√

3) · Z[
√

3]

which gives the result.

f. We are looking for an element a+ b
√

3 such that

(a+ b
√

3) · Z[
√

3] = 11 · Z[
√

3] + (−5 +
√

3) · Z[
√

3].

If this equality is true, there must be an element c+ d
√

3 such that

(a+ b
√

3)(c+ d
√

3) = 11.

Solving this equation, we get

c =
11a

a2 − 3b2
, d =

11b

−a2 + 3b2
.

Notice that a2−3b2 is the norm of our potential generator. Since both c and
d are integers, the element a2 − 3b2 must divide 11a and 11b.
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Let’s pick a = 1 and b = 2 in which case a2 − 3b2 = −11 divides both
11a = 11 and 11b = 22. I claim that this element generates the kernel.

The equality
1 + 2

√
3 = 1 · 11 + 2 · (−5 +

√
3),

gives one inclusion. On the other hand we have

11 = (1 + 2
√

3)(−1 + 2
√

3), −5 +
√

3 = (1 + 2
√

3)(1−
√

3)

which give the other inclusion.

2 Question 2

By M2(F2) we denote the ring consisting of all 2×2 matrices with coefficients in

F2. Let A =

(
1 1
1 0

)
1. Furthermore, evA : F2[x] → M2(F2) denotes evaluation

at A.

2.1 Preliminaries

Before we start answering the questions, note first that evA is a ring homomor-
phism as in Example III.2.4. Indeed, consider the ring homomorphism

φ : F2 → M2(F2) (1)

given by

0 7→
(

0 0
0 0

)
=: O, (2)

1 7→
(

1 0
0 1

)
=: I. (3)

Then the matrix A commutes with all elements in the image of φ (as in Example
III.2.4), so we can use Theorem III.2.1(c) to obtain the desired ring homomor-
phism evA : F2[x]→ M2(F2).

Secondly, note that A2 =

(
0 1
1 1

)
, so that

A2 +A+ I = O. (4)

This implies that x2 + x + 1 ∈ F2[x] maps to zero under the evaluation homo-
morphism evA. By using long division, we then obtain for every f ∈ F2[x] a
unique remainder r of degree < 2 such that

f = q · (x2 + x+ 1) + r.

This representation will be used often in the upcoming questions.

1I changed the notation for the matrix because φ is usually used in the book for homomor-
phisms. This notation is also in line with the notation used in Example III.2.4.
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2.2 The question

(a) Is evA surjective? Answer: Consider the set S of all polynomials of degree
strictly less than 2 inside F2[x]. We then have evA(S) = evA(F2[x]). In-
deed, by the above considerations every element f ∈ F2[x] can be uniquely
written as f = q ·(x2 + x+ 1)+r, with r in S. Applying evA to this equa-
tion, we then have

evA(f) = evA(q)evA(x2 + x+ 1) + evA(r) = 0 + evA(r) = evA(r). (5)

This shows that evA(f) ∈ evA(S). Since f was arbitrary, we conclude
that evA(F2[x]) ⊂ evA(S). We already have evA(S) ⊂ evA(F2[x]) because
S ⊂ F2[x], so we conclude that evA(S) = evA(F2[x]).

Note now that S has 4 elements (namely: 0, 1, x, x + 1), so evA(S) =
evA(F2[x]) has at most 4 elements. Since M2(F2) has 16 elements, we
conclude that evA cannot be surjective.

(b) Show that x2+x+1 is the minimal polynomial of A. Answer: By Example
III.4.4, the minimal polynomial is the monic polynomial mA ∈ F2[x] such
that Ker(evA) = (mA). We already saw in Equation 4 that x2 + x + 1 ∈
Ker(evA), so (x2 + x+ 1) ⊂ Ker(evA). Since x2 + x+ 1 is irreducible (it
has no zeros, so it is irreducible by Theorem V.1.3) in the principal ideal
domain F2[x], we find that (x2 + x + 1) is maximal by Theorem V.2.4.
The kernel of evA is not the entire ring (for instance I does not map to
zero), so we conclude that Ker(evA) = (x2 + x + 1). We thus find that
x2 + x+ 1 is the minimal polynomial of A.

(c) Is Ker(evA) a prime ideal? Answer: As we saw in (b), it is maximal, so it
is prime by Corollary IV.2.7.

(d) Is evA(F2[x]) a field? Answer: By the first isomorphism theorem (The-
orem II.3.7), we have that evA(F2[x]) ' F2[x]/(x2 + x+ 1). Since (x2 +
x+ 1) is maximal, we have that F2[x]/(x2 + x+ 1) is a field by Theorem
IV.2.3. We conclude that evA(F2[x]) is a field.

(e) Determine a generator of the ideal Ker(evA). Answer: The minimal poly-
nomial is the monic generator of the kernel of this homomorphism by def-
inition. By part (b), the minimal polynomial is x2 + x + 1. We conclude
that x2 + x+ 1 is a generator of Ker(evA).

(f) How many elements does (F2[x]/Ker(evA))× have? Answer: By part (d),
evA(F2[x]) is a field. This implies that the unit group (F2[x]/Ker(evA))× is
the set of nonzero elements in this ring. By the considerations in part (a),
evA(F2[x]) has at most 4 elements. In fact, it has exactly four elements:

x is mapped to

(
1 1
1 0

)
, x + 1 is mapped to

(
0 1
1 1

)
, 1 is mapped to I

and 0 is mapped to O. We conclude that there are 3 nonzero elements in
evA(F2[x]) and thus (F2[x]/Ker(evA))× has order 3.

3 Question 3

Let f := x3 − 2 ∈ F7[x] be a polynomial.
(a) We want to prove that f ∈ F7[x] is irreducible. Since it is a cubic polynomial,
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by theorem V.1.3, it is enough to prove that f does not have a zero in F7. We
can do it by hand, by computing all possible values of f(x) and seeing that
there is no value with f(x) = 0, as it is given in the table:

x f(x)
0 5
1 6
2 6
3 4
4 5
5 4
6 4

We could do it in a easier way, as we know that in this field, for all x 6= 0 holds
x6 = 1, implying that x3 = ±1, therefore x3− 2 does not have roots in F7 since
x = 0 is not a zero of f .
(b) Let R := F7[x]/(f · F7[x]). By theorem V.2.7 we conclude that R is a field
because f is irreducible (and by theorem V.2.4 we know that the ideal f ·F7[x]
is maximal in F7[x]).
(c) A polynomial g(y) := y3 − y + 2 ∈ F7 is also irreducible, because it has no
zeros in F7, as we can check from the table:

y g(y)
0 2
1 2
2 1
3 5
4 6
5 3
6 2

Therefore, as in (a), we conclude that R′ = F7[y]/(g ·F7[y]) is a field. Denote by
β a zero of g in its splitting field. Then R′ ∼= F7(β), by theorem VII.2.5. Fields
R and R′ are extensions of F7 by algebraic numbers α and β, respectively, whose
minimal polynomials, f and g, are of degree three (we know that polynomials
f and g are irreducible, so minimal for α and β). Then, by theorem VII.3.3,
we conclude that

[R : F7] = deg(f) = 3 = deg(g) = [R′ : F7],

i.e. both of these fields are cubic extensions of F7. Theorem IX.1.1 states that
a cubic extension of F7 is unique up to isomorphism, giving a desired conclusion
R ∼= R′.
(d) We know already one zero of a polynomial f , this is α. We see that the other
roots of a polynomial f differ from α ”by a multiplication of some third root of
unity”. In F7, there are all three third roots of unity. Namely, in characteristics
7, we have 23 = 1 and 43 = 1 (and of course 13 = 1). So, the roots of f are α,
2α and 4α, all of them are elements in R. So, Ω, the splitting field of f , is equal
to R. As this is a cubic extension of F7, it has 73 = 343 elements.
(e) Let α be a zero of a polynomial f in Ω. We want to determine its order in
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a multiplicative group Ω∗. We know that α3 = 2. We also know that 23 = 1
in F7, therefore in Ω too. So, α9 = 1 and if n is the order of α, then n | 9. As
α 6= 1 and we know that α3 = 2 6= 1, the order cannot be smaller than 9. The
order of α in Ω∗ is 9.
(f) The map ϕ : R −→ R is given by

ϕ(a+ bx+ cx2 (mod f)) = a+ 4bx+ 2cx2 (mod f).

Since we know that R ∼= F7(α), where f(α) = 0, the map ϕ is the same as a
map ϕ : F7(α) −→ F7(α) given by

ϕ(a+ bα+ cα2) = a+ 4bα+ 2cα2.

(Recall that this is true because α is the image of x under the isomorphism
i : R ∼= F7(α), i(x (mod f)) = α.) We need to check that ϕ is an automor-
phism. So, we need to check that
(1) ϕ(0) = 0, which follows when we put a = b = c = 0;
(2) ϕ(1) = 1, which follows for a = 1, b = c = 0;
(3) ϕ is compatible with +

ϕ((a1+b1α+c1α
2))+(a2+b2α+c2α

2)) = ϕ((a1+a2)+(b1+b2)α+(c1+c2)α2) =

= (a1+a2)+4(b1+b2)α+2(c1+c2)α2 = (a1+4b1α+2c1α
2)+(a2+4b2α+2c2α

2) =

= ϕ(a1 + b1α+ c1α
2) + ϕ(a2 + b2α+ c2α

2);

(4) ϕ is compatible with ·, we compute both expressions

ϕ((a1 + b1α+ c1α
2)) · (a2 + b2α+ c2α

2)) =

= ϕ((a1a2 + 2b1c2 + 2c1b2) + (a1b2 + b1a2 + 2c1c2)α+ (a1c2 + b1b2 + c1a2)α2)) =

= (a1a2 + 2b1c2 + 2c1b2) + 4(a1b2 + b1a2 + 2c1c2)α+ 2(a1c2 + b1b2 + c1a2)α2,

ϕ(a1+b1α+c1α
2)·ϕ(a2+b2α+c2α

2) = (a1+4b1α+2c1α
2))·(a2+4b2α+2c2α

2) =

= (a1a2 + 2b1c2 + 2c1b2) + 4(a1b2 + b1a2 + 2c1c2)α+ 2(a1c2 + b1b2 + c1a2)α2,

keeping in mind that we compute in characteristics 7, i.e. 7x = 0, for all x. We
see that we get the same expressions, so ϕ is compatible with ·;
(5) ϕ is injective. We already know that as all field homomorphisms are injective,
and from (1)-(4) it follows that ϕ is a field homomorphism. But we can explicitly
check that as

ϕ(a+ bα+ cα2) = a+ 4bα+ 2cα2 = 0

implies a = b = c = 0, so ker(ϕ) = 0.
(6) ϕ is surjective. We want to find a preimage for any A + Bα + Cα2. From
the definition of ϕ, we see that

ϕ(A+ 2Bα+ 4Cα2) = A+Bα+ Cα2,

remembering that 7B = 7C = 0. So, ϕ is indeed the automorphism of R.

There is an easier way to prove this fact. We know by theorem VIII.1.5(i)
that all F7-automorphisms of F7(α) map α into some other root of a polynomial
f . So, α can be mapped to α, 2α or 4α. We see that ϕ(α) = 4α. It is enough to
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give the image ϕ(α) to determine a homomorphism since all elements of F7(α)
can be expressed as a combination of α and elements of F7. We want to extend
the map ϕ. Then

ϕ(α2) = ϕ(α · α) = ϕ(α) · ϕ(α) = 4α · 4α = 2α2

and then by additivity

ϕ(a+ bα+ cα2) = a+ 4bα+ 2cα2.

By construction of ϕ, it is a field homomorphism. To prove that it is an auto-
morphism, it is enough to do the final part and to prove that ϕ ◦ ϕ ◦ ϕ = id
because then follows that ϕ ◦ ϕ is an inverse of ϕ. There are (at least) three
ways to do it. The first one is to prove it by direct computation. The other one
is to note that the map ϕ is linear and can be represented in a basis [1, α, α2]
as a matrix

M =

1 0 0
0 4 0
0 0 2


and to compute that M3 is the identity matrix. Finally, the third way is deter-
mine the image of α. We compute that ϕ(ϕ(ϕ(α))) = ϕ(ϕ(4α)) = ϕ(2α) = α,
and since it is identity on F7 and on α it is the identity on the whole F7(α). So,
ϕ has the order 3 because ϕ 6= id.
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