Algebraic Structures, Solutions for Exam 2018

June 16, 2019

1 Question 1

- a. The element $2 + \sqrt{3}$ works.
- b. Consider the subgroup of $\mathbb{Z}[\sqrt{3}]^{\times}$ generated by the element above:

$$< 2 + \sqrt{3} >= \{(2 + \sqrt{3})^n : n \in \mathbb{Z}\}.$$

Notice that this set is infinite. Then, in particular, $\mathbb{Z}[\sqrt{3}]^{\times}$ is inifite.

- c. Read the proof of VI.1.5 Theorem in lecture notes.
- d. This is an easy calculation.
- e. By definition, one inclusion is trivial. For the other, take $a + b\sqrt{3} \in \text{Ker}(\varphi)$. Then $a + 5b = 0 \mod 11$ which means that a + 5b = 11k for some $k \in \mathbb{Z}$. Then we have

$$a + b\sqrt{3} = (11k - 5b) + b\sqrt{3} = 11k + b(-5 + \sqrt{3})$$

which implies that

$$\operatorname{Ker}(\varphi) \subset 11 \cdot \mathbb{Z} + (-5 + \sqrt{3}) \cdot \mathbb{Z}.$$

Clearly,

$$11 \cdot \mathbb{Z} + (-5 + \sqrt{3}) \cdot \mathbb{Z} \subset 11 \cdot \mathbb{Z}[\sqrt{3}] + (-5 + \sqrt{3}) \cdot \mathbb{Z}[\sqrt{3}]$$

which gives the result.

f. We are looking for an element $a + b\sqrt{3}$ such that

$$(a+b\sqrt{3})\cdot\mathbb{Z}[\sqrt{3}] = 11\cdot\mathbb{Z}[\sqrt{3}] + (-5+\sqrt{3})\cdot\mathbb{Z}[\sqrt{3}].$$

If this equality is true, there must be an element $c + d\sqrt{3}$ such that

$$(a + b\sqrt{3})(c + d\sqrt{3}) = 11.$$

Solving this equation, we get

$$c = \frac{11a}{a^2 - 3b^2}, \quad d = \frac{11b}{-a^2 + 3b^2}$$

Notice that $a^2 - 3b^2$ is the norm of our potential generator. Since both c and d are integers, the element $a^2 - 3b^2$ must divide 11a and 11b.

Let's pick a = 1 and b = 2 in which case $a^2 - 3b^2 = -11$ divides both 11a = 11 and 11b = 22. I claim that this element generates the kernel. The equality

$$1 + 2\sqrt{3} = 1 \cdot 11 + 2 \cdot (-5 + \sqrt{3}),$$

gives one inclusion. On the other hand we have

$$11 = (1 + 2\sqrt{3})(-1 + 2\sqrt{3}), \quad -5 + \sqrt{3} = (1 + 2\sqrt{3})(1 - \sqrt{3})$$

which give the other inclusion.

2 Question 2

By $M_2(\mathbb{F}_2)$ we denote the ring consisting of all 2×2 matrices with coefficients in \mathbb{F}_2 . Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^1$. Furthermore, $ev_A : \mathbb{F}_2[x] \to M_2(\mathbb{F}_2)$ denotes evaluation at A.

2.1 Preliminaries

Before we start answering the questions, note first that ev_A is a ring homomorphism as in Example III.2.4. Indeed, consider the ring homomorphism

$$\phi: \mathbb{F}_2 \to \mathrm{M}_2(\mathbb{F}_2) \tag{1}$$

given by

$$0 \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} =: O, \tag{2}$$

$$1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =: I. \tag{3}$$

Then the matrix A commutes with all elements in the image of ϕ (as in Example III.2.4), so we can use Theorem III.2.1(c) to obtain the desired ring homomorphism $\operatorname{ev}_A : \mathbb{F}_2[x] \to \operatorname{M}_2(\mathbb{F}_2)$.

Secondly, note that
$$A^2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
, so that
 $A^2 + A + I = O.$ (4)

This implies that $x^2 + x + 1 \in \mathbb{F}_2[x]$ maps to zero under the evaluation homomorphism ev_A . By using long division, we then obtain for every $f \in \mathbb{F}_2[x]$ a unique remainder r of degree < 2 such that

$$f = q \cdot (x^2 + x + 1) + r.$$

This representation will be used often in the upcoming questions.

¹I changed the notation for the matrix because ϕ is usually used in the book for homomorphisms. This notation is also in line with the notation used in Example III.2.4.

2.2 The question

(a) Is ev_A surjective? Answer: Consider the set S of all polynomials of degree strictly less than 2 inside $\mathbb{F}_2[x]$. We then have $\operatorname{ev}_A(S) = \operatorname{ev}_A(\mathbb{F}_2[x])$. Indeed, by the above considerations every element $f \in \mathbb{F}_2[x]$ can be uniquely written as $f = q \cdot (x^2 + x + 1) + r$, with r in S. Applying ev_A to this equation, we then have

$$ev_A(f) = ev_A(q)ev_A(x^2 + x + 1) + ev_A(r) = 0 + ev_A(r) = ev_A(r).$$
 (5)

This shows that $\operatorname{ev}_A(f) \in \operatorname{ev}_A(S)$. Since f was arbitrary, we conclude that $\operatorname{ev}_A(\mathbb{F}_2[x]) \subset \operatorname{ev}_A(S)$. We already have $\operatorname{ev}_A(S) \subset \operatorname{ev}_A(\mathbb{F}_2[x])$ because $S \subset \mathbb{F}_2[x]$, so we conclude that $\operatorname{ev}_A(S) = \operatorname{ev}_A(\mathbb{F}_2[x])$.

Note now that S has 4 elements (namely: 0, 1, x, x + 1), so $ev_A(S) = ev_A(\mathbb{F}_2[x])$ has at most 4 elements. Since $M_2(\mathbb{F}_2)$ has 16 elements, we conclude that ev_A cannot be surjective.

- (b) Show that $x^2 + x + 1$ is the minimal polynomial of A. Answer: By Example III.4.4, the minimal polynomial is the monic polynomial $m_A \in \mathbb{F}_2[x]$ such that $\operatorname{Ker}(\operatorname{ev}_A) = (m_A)$. We already saw in Equation 4 that $x^2 + x + 1 \in \operatorname{Ker}(\operatorname{ev}_A)$, so $(x^2 + x + 1) \subset \operatorname{Ker}(\operatorname{ev}_A)$. Since $x^2 + x + 1$ is irreducible (it has no zeros, so it is irreducible by Theorem V.1.3) in the principal ideal domain $\mathbb{F}_2[x]$, we find that $(x^2 + x + 1)$ is maximal by Theorem V.2.4. The kernel of ev_A is not the entire ring (for instance I does not map to zero), so we conclude that $\operatorname{Ker}(\operatorname{ev}_A) = (x^2 + x + 1)$. We thus find that $x^2 + x + 1$ is the minimal polynomial of A.
- (c) Is Ker(ev_A) a prime ideal? Answer: As we saw in (b), it is maximal, so it is prime by Corollary IV.2.7.
- (d) Is ev_A(𝔅₂[x]) a field? Answer: By the first isomorphism theorem (Theorem II.3.7), we have that ev_A(𝔅₂[x]) ≃ 𝔅₂[x]/(x² + x + 1). Since (x² + x + 1) is maximal, we have that 𝔅₂[x]/(x² + x + 1) is a field by Theorem IV.2.3. We conclude that ev_A(𝔅₂[x]) is a field.
- (e) Determine a generator of the ideal Ker(ev_A). Answer: The minimal polynomial is the monic generator of the kernel of this homomorphism by definition. By part (b), the minimal polynomial is $x^2 + x + 1$. We conclude that $x^2 + x + 1$ is a generator of Ker(ev_A).
- (f) How many elements does $(\mathbb{F}_2[x]/\operatorname{Ker}(\operatorname{ev}_A))^{\times}$ have? Answer: By part (d), ev_A($\mathbb{F}_2[x]$) is a field. This implies that the unit group $(\mathbb{F}_2[x]/\operatorname{Ker}(\operatorname{ev}_A))^{\times}$ is the set of nonzero elements in this ring. By the considerations in part (a), ev_A($\mathbb{F}_2[x]$) has at most 4 elements. In fact, it has exactly four elements: x is mapped to $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, x + 1 is mapped to $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, 1 is mapped to Iand 0 is mapped to O. We conclude that there are 3 nonzero elements in ev_A($\mathbb{F}_2[x]$) and thus $(\mathbb{F}_2[x]/\operatorname{Ker}(\operatorname{ev}_A))^{\times}$ has order 3.

3 Question 3

Let $f := x^3 - 2 \in \mathbb{F}_7[x]$ be a polynomial.

(a) We want to prove that $f \in \mathbb{F}_7[x]$ is irreducible. Since it is a cubic polynomial,

by theorem **V.1.3**, it is enough to prove that f does not have a zero in \mathbb{F}_7 . We can do it by hand, by computing all possible values of f(x) and seeing that there is no value with f(x) = 0, as it is given in the table:

x	f(x)
0	5
1	6
2	6
3	4
4	5
5	4
6	4

We could do it in a easier way, as we know that in this field, for all $x \neq 0$ holds $x^6 = 1$, implying that $x^3 = \pm 1$, therefore $x^3 - 2$ does not have roots in \mathbb{F}_7 since x = 0 is not a zero of f.

(b) Let $R := \mathbb{F}_7[x]/(f \cdot \mathbb{F}_7[x])$. By theorem **V.2.7** we conclude that R is a field because f is irreducible (and by theorem **V.2.4** we know that the ideal $f \cdot \mathbb{F}_7[x]$ is maximal in $\mathbb{F}_7[x]$).

(c) A polynomial $g(y) := y^3 - y + 2 \in \mathbb{F}_7$ is also irreducible, because it has no zeros in \mathbb{F}_7 , as we can check from the table:

y	g(y)
0	2
1	2
2	1
3	5
4	6
5	3
6	2

Therefore, as in (a), we conclude that $R' = \mathbb{F}_7[y]/(g \cdot \mathbb{F}_7[y])$ is a field. Denote by β a zero of g in its splitting field. Then $R' \cong \mathbb{F}_7(\beta)$, by theorem **VII.2.5**. Fields R and R' are extensions of \mathbb{F}_7 by algebraic numbers α and β , respectively, whose minimal polynomials, f and g, are of degree three (we know that polynomials f and g are irreducible, so minimal for α and β). Then, by theorem **VII.3.3**, we conclude that

$$[R: \mathbb{F}_7] = \deg(f) = 3 = \deg(g) = [R': \mathbb{F}_7],$$

i.e. both of these fields are cubic extensions of \mathbb{F}_7 . Theorem **IX.1.1** states that a cubic extension of \mathbb{F}_7 is unique up to isomorphism, giving a desired conclusion $R \cong R'$.

(d) We know already one zero of a polynomial f, this is α . We see that the other roots of a polynomial f differ from α "by a multiplication of some third root of unity". In \mathbb{F}_7 , there are all three third roots of unity. Namely, in characteristics 7, we have $2^3 = 1$ and $4^3 = 1$ (and of course $1^3 = 1$). So, the roots of f are α , 2α and 4α , all of them are elements in R. So, Ω , the splitting field of f, is equal to R. As this is a cubic extension of \mathbb{F}_7 , it has $7^3 = 343$ elements.

(e) Let α be a zero of a polynomial f in Ω . We want to determine its order in

a multiplicative group Ω^* . We know that $\alpha^3 = 2$. We also know that $2^3 = 1$ in \mathbb{F}_7 , therefore in Ω too. So, $\alpha^9 = 1$ and if *n* is the order of α , then $n \mid 9$. As $\alpha \neq 1$ and we know that $\alpha^3 = 2 \neq 1$, the order cannot be smaller than 9. The order of α in Ω^* is 9.

(f) The map $\varphi: R \longrightarrow R$ is given by

$$\varphi(a + bx + cx^2 \pmod{f}) = a + 4bx + 2cx^2 \pmod{f}.$$

Since we know that $R \cong \mathbb{F}_7(\alpha)$, where $f(\alpha) = 0$, the map φ is the same as a map $\varphi : \mathbb{F}_7(\alpha) \longrightarrow \mathbb{F}_7(\alpha)$ given by

$$\varphi(a + b\alpha + c\alpha^2) = a + 4b\alpha + 2c\alpha^2$$

(Recall that this is true because α is the image of x under the isomorphism $i: R \cong \mathbb{F}_7(\alpha), i(x \pmod{f}) = \alpha$.) We need to check that φ is an automorphism. So, we need to check that

- (1) $\varphi(0) = 0$, which follows when we put a = b = c = 0;
- (2) $\varphi(1) = 1$, which follows for a = 1, b = c = 0;
- (3) φ is compatible with +

$$\varphi((a_1+b_1\alpha+c_1\alpha^2))+(a_2+b_2\alpha+c_2\alpha^2)) = \varphi((a_1+a_2)+(b_1+b_2)\alpha+(c_1+c_2)\alpha^2) = = (a_1+a_2)+4(b_1+b_2)\alpha+2(c_1+c_2)\alpha^2 = (a_1+4b_1\alpha+2c_1\alpha^2)+(a_2+4b_2\alpha+2c_2\alpha^2) = = \varphi(a_1+b_1\alpha+c_1\alpha^2)+\varphi(a_2+b_2\alpha+c_2\alpha^2);$$

(4) φ is compatible with \cdot , we compute both expressions

$$\varphi((a_1 + b_1\alpha + c_1\alpha^2)) \cdot (a_2 + b_2\alpha + c_2\alpha^2)) =$$

$$= \varphi((a_1a_2 + 2b_1c_2 + 2c_1b_2) + (a_1b_2 + b_1a_2 + 2c_1c_2)\alpha + (a_1c_2 + b_1b_2 + c_1a_2)\alpha^2)) =$$

$$= (a_1a_2 + 2b_1c_2 + 2c_1b_2) + 4(a_1b_2 + b_1a_2 + 2c_1c_2)\alpha + 2(a_1c_2 + b_1b_2 + c_1a_2)\alpha^2,$$

$$\varphi(a_1 + b_1\alpha + c_1\alpha^2) \cdot \varphi(a_2 + b_2\alpha + c_2\alpha^2) = (a_1 + 4b_1\alpha + 2c_1\alpha^2)) \cdot (a_2 + 4b_2\alpha + 2c_2\alpha^2) =$$

$$= (a_1a_2 + 2b_1c_2 + 2c_1b_2) + 4(a_1b_2 + b_1a_2 + 2c_1c_2)\alpha + 2(a_1c_2 + b_1b_2 + c_1a_2)\alpha^2,$$
keeping in mind that we compute in characteristics 7, i.e. $7x = 0$, for all x . We

see that we get the same expressions, so φ is compatible with \cdot ; (5) φ is injective. We already know that as all field homomorphisms are injective, and from (1)-(4) it follows that φ is a field homomorphism. But we can explicitly check that as

$$\varphi(a + b\alpha + c\alpha^2) = a + 4b\alpha + 2c\alpha^2 = 0$$

implies a = b = c = 0, so ker $(\varphi) = 0$.

(6) φ is surjective. We want to find a preimage for any $A + B\alpha + C\alpha^2$. From the definition of φ , we see that

$$\varphi(A + 2B\alpha + 4C\alpha^2) = A + B\alpha + C\alpha^2,$$

remembering that 7B = 7C = 0. So, φ is indeed the automorphism of R.

There is an easier way to prove this fact. We know by theorem **VIII.1.5**(i) that all \mathbb{F}_7 -automorphisms of $\mathbb{F}_7(\alpha)$ map α into some other root of a polynomial f. So, α can be mapped to α , 2α or 4α . We see that $\varphi(\alpha) = 4\alpha$. It is enough to

give the image $\varphi(\alpha)$ to determine a homomorphism since all elements of $\mathbb{F}_7(\alpha)$ can be expressed as a combination of α and elements of \mathbb{F}_7 . We want to extend the map φ . Then

$$\varphi(\alpha^2) = \varphi(\alpha \cdot \alpha) = \varphi(\alpha) \cdot \varphi(\alpha) = 4\alpha \cdot 4\alpha = 2\alpha^2$$

and then by additivity

$$\varphi(a+b\alpha+c\alpha^2) = a+4b\alpha+2c\alpha^2$$

By construction of φ , it is a field homomorphism. To prove that it is an automorphism, it is enough to do the final part and to prove that $\varphi \circ \varphi \circ \varphi = \text{id}$ because then follows that $\varphi \circ \varphi$ is an inverse of φ . There are (at least) three ways to do it. The first one is to prove it by direct computation. The other one is to note that the map φ is linear and can be represented in a basis $[1, \alpha, \alpha^2]$ as a matrix

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

and to compute that M^3 is the identity matrix. Finally, the third way is determine the image of α . We compute that $\varphi(\varphi(\varphi(\alpha))) = \varphi(\varphi(4\alpha)) = \varphi(2\alpha) = \alpha$, and since it is identity on \mathbb{F}_7 and on α it is the identity on the whole $\mathbb{F}_7(\alpha)$. So, φ has the order 3 because $\varphi \neq id$.